I am a Postdoctoral researcher at the University of Oxford in the Department of Computer Science working on scalable and flexible methods for spatiotemporal statistics and Bayesian machine learning with applications in epidemiology. I work with Seth Flaxman, as well as the wider Machine Learning & Global Health Network. Currently, my focus is on using deep generative modelling to power MCMC inference in classical spatial statistics, as well as adaptive survey design.
Previously, I did a postdoc in Bayesian Machine Learning at AstraZeneca R&D where I also collaborated with Prioris.ai. My research there was dedicated to toxicity prediction and concentration-response curve fitting of large molecules.
In 2019 I completed a PhD in Epidemiology at the Swiss TPH, where I worked on modelling of point patterns using Log-Gaussian Cox Process and detection of hotspots on gridded surfaces.
I am also passionate about community building, diversity and inclusion. I have initiated and participated in a number of outreach activities, creating equitable access and opportunties in education, research and technology.
Download my resumé.
For more about my work, see the list of my recent publications and talks.
PhD (summa cum laude) in Epidemiology, 2019
Swiss Tropical and Public Health Institute (TPH), University of Basel, Switzerland
Diploma (first class honours) in Mathematics, 2008
Moscow State University, Russia